sega_learn.neural_networks.layers_jit |
Modules | ||||||
|
Classes | ||||||||||||||||||||||||||||||||||
|
Data | ||
CACHE = False conv_spec = [('in_channels', int32), ('out_channels', int32), ('kernel_size', int32), ('stride', int32), ('padding', int32), ('weights', Array(float64, 4, 'A', False, aligned=True)), ('biases', Array(float64, 2, 'A', False, aligned=True)), ('activation', unicode_type), ('weight_gradients', Array(float64, 4, 'A', False, aligned=True)), ('bias_gradients', Array(float64, 2, 'A', False, aligned=True)), ('input_cache', Array(float64, 4, 'A', False, aligned=True)), ('X_cols', Array(float64, 3, 'A', False, aligned=True)), ('X_padded', Array(float64, 4, 'A', False, aligned=True)), ('h_out', int32), ('w_out', int32), ('input_size', int32), ('output_size', int32)] flatten_spec = [('input_shape', UniTuple(int32, 3)), ('output_size', int32), ('input_cache', Array(float64, 4, 'A', False, aligned=True)), ('input_size', int32)] float64 = float64 int32 = int32 spec = [('weights', Array(float64, 2, 'C', False, aligned=True)), ('biases', Array(float64, 2, 'C', False, aligned=True)), ('activation', unicode_type), ('weight_gradients', Array(float64, 2, 'C', False, aligned=True)), ('bias_gradients', Array(float64, 2, 'C', False, aligned=True)), ('input_cache', Array(float64, 2, 'C', False, aligned=True)), ('output_cache', Array(float64, 2, 'C', False, aligned=True)), ('input_size', int32), ('output_size', int32)] |