sega_learn.nearest_neighbors.knn_regressor

 
Modules
       
numpy

 
Classes
       
sega_learn.nearest_neighbors.base.KNeighborsBase(abc.ABC)
KNeighborsRegressor

 
class KNeighborsRegressor(sega_learn.nearest_neighbors.base.KNeighborsBase)
    KNeighborsRegressor(n_neighbors=5, distance_metric='euclidean', one_hot_encode=False, fp_precision=<class 'numpy.float64'>, numba=False)
 
K-Nearest Neighbors classifier.
 
This class implements the k-nearest neighbors algorithm for regression.
 
 
Method resolution order:
KNeighborsRegressor
sega_learn.nearest_neighbors.base.KNeighborsBase
abc.ABC
builtins.object

Methods defined here:
predict(self, X)
Predict the class labels for the provided data.
 
Args:
    X: array-like, shape (n_samples, n_features) - The input data for which to predict the class labels.
 
Returns:
    predictions: array, shape (n_samples,) - The predicted class labels for the input data.

Data and other attributes defined here:
__abstractmethods__ = frozenset()

Methods inherited from sega_learn.nearest_neighbors.base.KNeighborsBase:
__init__(self, n_neighbors=5, distance_metric='euclidean', one_hot_encode=False, fp_precision=<class 'numpy.float64'>, numba=False)
Initialize the KNeighborsBase class.
 
Args:
    n_neighbors: int, default=5. The number of neighbors to use for the KNN algorithm.
    distance_metric: str, default='euclidean'. The distance metric to use for calculating distances.
    one_hot_encode: bool, default=False. Whether to apply one-hot encoding to the categorical columns.
    fp_precision: data type, default=np.float64. The floating point precision to use for the calculations.
    numba: bool, default=True. Whether to use numba for speeding up the calculations.
fit(self, X, y)
Fit the model using the training data.
 
Args:
    X: array-like, shape (n_samples, n_features) - The training data.
    y: array-like, shape (n_samples,) - The target values.
get_distance_indices(self, X)
Compute the distances and return the indices of the nearest points im the training data.
 
Args:
    X: array-like, shape (n_samples, n_features) - The input data.
 
Returns:
    indices: array, shape (n_samples, n_neighbors) - The indices of the nearest neighbors.

Data descriptors inherited from sega_learn.nearest_neighbors.base.KNeighborsBase:
__dict__
dictionary for instance variables
__weakref__
list of weak references to the object